
PREVIEW
 VERSION

This is only a preview version of the GROMOS Manual and User Guide.
The full version can be purchased on http://www.gromos.net/

The GROMOS Software for (Bio)Molecular
Simulation

Volume 6: Technical Details

August 24, 2012

PREVIEW
 VERSION

This is only a preview version of the GROMOS Manual and User Guide.
The full version can be purchased on http://www.gromos.net/

PREVIEW
 VERSION

This is only a preview version of the GROMOS Manual and User Guide.
The full version can be purchased on http://www.gromos.net/

Contents

Chapter 1. Outline of the GROMOS Code 6-1
1.1. PROMD outline 6-1
1.1.1. Important PROMD modules and data types 6-1
1.1.2. Important PROMD routines 6-2
1.1.3. Internal topology in PROMD 6-2
1.1.4. Compact arrays 6-3
1.2. MD++ outline 6-3
1.2.1. Efficiency 6-5
1.2.2. Debugging information 6-7
1.2.3. In-code documentation 6-7
1.3. GROMOS++ outline 6-7
1.3.1. GROMOS++ source code and in-code documentation 6-7

Chapter 2. Error Messages 6-9

Chapter 3. Machine Compatibility 6-11

Chapter 4. Numerical and Mathematical Functions 6-13
4.1. Numerical subroutines 6-13
4.2. Mathematical subroutines 6-13
4.2.1. PROMD 6-13
4.2.2. MD++ 6-13
4.2.3. GROMOS++ 6-14

Chapter 5. Nomenclature 6-17

Chapter 6. Units 6-19

Chapter 7. Charge Group Codes 6-23

Chapter 8. Pair List Generation 6-25
8.1. Double loop pair list 6-25
8.2. Grid pair list (Heinz and Hünenberger) 6-25
8.3. Grid pair list with expanded coordinates 6-25

Chapter 9. Boundary Conditions and Periodicity 6-27

Chapter 10. Generation of Cartesian Coordinates from Internal Coordinates 6-35

Chapter 11. Generation of Hydrogen Atom Coordinates 6-39

Chapter 12. Generation of Atomic Velocities 6-45

Chapter 13. What to Do when SHAKE Fails 6-47

Chapter 14. Removal of Centre of Mass Motion 6-49

Chapter 15. Saving Trajectories 6-51

Chapter 16. Performing a Translational Superposition and a Rotational Least-Squares Fit 6-53

Chapter 17. Transformation between Coordinates 6-55

6-I

PREVIEW
 VERSION

This is only a preview version of the GROMOS Manual and User Guide.
The full version can be purchased on http://www.gromos.net/

17.1. Cartesian and Oblique Contravariant Crystallographic Coordinates 6-55

Chapter 18. Distributions, Averages and Root-Mean-Square Fluctuations 6-59

Chapter 19. Dihedral-Angle Conventions, Names and Transitions 6-61

Chapter 20. Definition of Hydrogen Bonds 6-65

Chapter 21. Time Correlation Functions and Spectral Densities 6-67
21.1. Use of fast Fourier transform (FFT) routines in GROMOS 6-68
21.1.1. Specification of the FFT libraries in PROMD 6-68
21.1.2. Linking of the FFTW library in PROMD 6-68

Chapter 22. Coarse Graining in GROMOS 6-71

Chapter 23. Parallelisation in GROMOS 6-73
23.1. Parallelisation in MD++ 6-73
23.2. Parallelisation in GROMOS++ 6-73

Chapter 24. Fast Solvent Interaction Function Evaluation 6-75
24.1. Solvent innerloops in MD++ 6-75

Chapter 25. Replica Exchange Simulation 6-77

Bibliography 6-i

6-II

PREVIEW
 VERSION

This is only a preview version of the GROMOS Manual and User Guide.
The full version can be purchased on http://www.gromos.net/

CHAPTER 1

Outline of the GROMOS Code

1.1. PROMD outline

PROMD contains three major routines for performing a simulation:

1. PROGRAM PROMD: Starts program, reads input files, etc.
2. SUBROUTINE DOINIT: Initialises all variables needed for simulation.
3. SUBROUTINE DORUN: Simulation loop.

All simulation procedures will have to run through the steps defined in these routines, where each step
is applied depending on the simulation procedure or simulation parameters defined. E.g. a step only to be
applied for EM will be encapsulated by IF (MDSWITCH%L EM) THEN.

Figure 1.1. Outline of the most important subroutines in PROMD.

See Fig. 1.1 for a detailed description of the different steps in these routines. These three routines call all
other necessary routines. Important routines are described in Sec. 1.1.2.

PROMD uses MODULES for storing global data and related subroutines. The different modules are
topic-based.

1.1.1. Important PROMD modules and data types.

LOGICALSMOD defines a set of logicals defining the simulation run. These direct the application of
steps in DOINIT and DORUN.

6-1

PREVIEW
 VERSION

This is only a preview version of the GROMOS Manual and User Guide.
The full version can be purchased on http://www.gromos.net/

MDMOD contains the data read from the input file and related subroutines

COORDMOD contains data such as coordinates, velocities, forces, specifications and related sub-
routines for reading and writing.

TOPOMOD contains the topologies read, the internal topology and related subroutines.

NONBONDEDMOD contains subroutines for nonbonded interaction calculations (pair list generation and
interaction evaluation)

COVALENTMOD contains subroutines for covalent interaction evaluations

DEBUGMOD contains subroutines and arrays for debug calls

ERRORMOD contains subroutines and arrays for error handling

FILEIOMOD contains subroutines for IO operations

MATHMOD contains subroutines for mathematical operations

TIMINGMOD contains subroutines for timing

PRECISIONMOD contains variable precision definition and numerical constants

1.1.2. Important PROMD routines.

FORCE This subroutine calculates the energy and the force of the current configuration

CONSTR Apply constraints

SORT X Sort charge groups into grid cells

EXPAND X Duplicate box sides

MAKE MASK Generate grid pair list mask

INIT LIST XX Generate grid pair list (XX may be IR or SR for intermediate or short range pair list)

NONB C XX Calculate nonbonded interactions based on a pair list (XX varies according to the
chosen pair list and long range correction)

CONTRACT X Reduce forces of an expanded system to the original system

COV XX Calculate covalent interactions (XX has the value BND for bonds, ANG for angles,
IMP for improper dihedrals and DIH for proper dihedrals)

1.1.3. Internal topology in PROMD. The internal topology is the set of parameters actually used
in the force calculations and is generated from the topologies read according to the input file.

The internal topology has three basic components

FFPARAMS (TYPE TOPO PARAM) All force-field parameters used in the simulation ordered
by types (6= to types defined in input topology, e.g. if only three different sets of
Lennard-Jones parameters are used in a simulation, these are stored as type 1 to 3)

SOLUTE (TYPE TOPO SOLUTE) All force-field types defined for the solute (bond types,
charge types, exclusions, etc.)

SOLUTE PERT (TYPE TOPO SOLUTE PERT) All force-field types defined for the perturbed part
of the solute

SOLVENT (TYPE TOPO SOLVENT) All force-field types defined for the solvent (restraint
types, charge types, etc.)

In many cases it is useful to operate with only one topology for the whole system instead of a set of solute
and solvent topologies. A common topology for the whole system is therefore generated.

6-2

PREVIEW
 VERSION

This is only a preview version of the GROMOS Manual and User Guide.
The full version can be purchased on http://www.gromos.net/

SYSTEM (TYPE TOPO SOLUTE) All force-field types defined for the whole system (solutes
+ solvents)

It is also useful to have the force-field parameters available in the same format as the corresponding types
found in SOLUTE, SOLVENT and SYSTEM, thus these parameters are copied from FFPARAMS with the
subroutine PARAMS TO SOLUTE and PARAMS TO SOLVENT. The topology format is designed such
that the parameters defined in FFPARAMS are the dominant ones, thus the subroutines PARAMS TO ***
should be rerun if FFPARAMS changes. This ensures that all topology data structures are consistent within
the program.

1.1.4. Compact arrays. For performance reasons it is important to store large arrays as compactly
as possible. PROMD therefore uses a special data structure for the pairlist and for the exclusions which
only requires one 32-bit integer per pair. The pairlist (TYPE G96PLIST) consists of four arrays

CGID A(NCG) The set of charge groups

N NEIGH(NCG) The number of neighbours of each charge group, I, in CGID A

N START(NCG) The starting position in CGID B of the neighbours of a given charge group I

CGID B(Npairs) The neighbours of each charge group in CGID A. The neighbours of charge group I

are given by CGID B(N START(I) + 1:N START(I) + N NEIGH(I))

The memory usage of this storage scales as

3NCG +Npairs ≈ Npairs = NCGNcut (1.1)

where NCG, Npairs and Ncut are the number of charge groups, neighbouring pairs and neighbours per
charge group, respectively. The ordering of array CGID A depends on the pair list generation routine.

The exclusions are stored in a similar data structure (TYPE EXCLUSION) and consist of

N EX(Natoms) The number of exclusions that a given atom, I, has with atoms of higher atom number

N START(Natoms) The starting position in EXCLUSIONS of the excluded atoms for a given atom I

EXCLUSIONS(Nexclusions)

The atom index of the excluded atoms for each atom in N EX. The indices of the
excluded atoms of atom I are given in
EXCLUSIONS(N START(I) + 1:N START(I) + N EX(I))

Note that only exclusions to higher atom numbers are listed (to prevent double counting) and that this
array (unlike the pairlist array) is sorted such that exclusions are listed in increasing order.

1.2. MD++ outline

The code is split into two parts, the first one being an MD library containing basic functions necessary
to run an MD simulation, the second one being the actual MD program. This second part is very small.
It is therefore easy to write other specialised MD programs that make use of a subset of the functions
provided in the library or apply them in a different order. The source code of the library is in turn split up
into nine different parts: math, simulation, topology, configuration, algorithm, interaction, io, util and check

(represented as C++ namespaces).

- math contains classes for vectors, matrices and vector arrays, mathematical operations, physical
constants and periodic boundary treatment.

- simulation contains the simulation parameters supplied to run an MD or SD simulation or an EM.
- topology contains the topology of the simulated system, possibly also including a perturbation topol-
ogy.

- configuration contains the state of a system: its coordinates, velocities, forces, restraints data and
so on.

- algorithm contains classes that use information from simulation and topology to act upon a configu-

ration. All steps during an MD or SD simulation or EM can be carried out using an algorithm.

6-3

PREVIEW
 VERSION

This is only a preview version of the GROMOS Manual and User Guide.
The full version can be purchased on http://www.gromos.net/

- interaction contains the largest algorithm: the energy, forces and virial evaluation. Here, all inter-
action terms and their parameters are defined. Because of its size, interaction is a separate part,
though it formally belongs to algorithm. The interaction part is further split into bonded, nonbonded
and special interactions.

- io contains classes to read in or write out information. All file access is block oriented and human
readable.

- util contains a few extra classes that are necessary to set up a simulation but which do not exactly
belong to it. Parsing of command line arguments, generation of initial velocities or setting of debug
levels are examples of classes found herein.

- check contains test routines. Testing includes the automatic calculation of energies under differ-
ent conditions as well as the calculation of forces, virial tensor and energy λ-derivatives and their
comparison to values obtained by finite difference calculations.

One step of an MD or SD simulation or EM consists of several Algorithms (List. 1.1) applied to the
Configuration in the right order.

1 class Algorithm {

2 public:

3 Algorithm(string name) : name(name) {}

4 ~Algorithm() {}

5 virtual int init(Topology & topo ,

6 Configuration & conf ,

7 Simulation & sim) = 0;

8

9 virtual int apply(Topology & topo ,

10 Configuration & conf ,

11 Simulation & sim) = 0;

12

13 string name;

14 };

Listing 1.1. Interface of the Algorithm class

The Algorithm Sequence class (List. 1.2) is a container for all these algorithms. When a simulation is set up,
they are inserted in the correct order into the Algorithm Sequence. Before the start of a simulation, all algo-
rithms will be initialised (by calling the init() function). During an MD step (Algorithm Sequence::run()),
the algorithms are applied (by calling Algorithm::apply()).

1 class Algorithm_Sequence : public vector <Algorithm *> {

2 public:

3 Algorithm_Sequence();

4 ~Algorithm();

5

6 int init(Topology & topo ,

7 Configuration & conf ,

8 Simulation & sim);

9

10 int run(Topology & topo ,

11 Configuration & conf ,

12 Simulation & sim);

13

14 Algorithm * algorithm(string name);

15 };

Listing 1.2. Interface of the Algorithm Sequence class. It is a container for Algorithm
objects which provides methods to initialise and run the contained algorithms. It further
provides access by name.

The force-field itself is also an algorithm, which, when applied, calculates the energies, forces and virial con-
tribution of all force-field terms for the complete system. The force-field terms themselves are Interaction
classes. The Forcefield is therefore a container to store the different Interaction objects (in analogy to
the Algorithm Sequence and Algorithm classes). When the force-field is applied, it calls
calculate interactions() on all interaction objects. There are distinct interaction objects for the co-
valent interactions (bond-length, bond-angle, improper-dihedral and torsional-dihedral interactions), the

6-4

PREVIEW
 VERSION

This is only a preview version of the GROMOS Manual and User Guide.
The full version can be purchased on http://www.gromos.net/

non-bonded interactions (pairlist construction, long-range interactions and short-range interactions) and
the non-physical interactions (atom-position, atom-distance, dihedral-angle, NOE or 3

J-value restraints).
It is very easy to add a custom Interaction class to calculate a non-standard interaction. An overview
of the (non-bonded) interaction classes is given in Fig. 1.2. The Nonbonded Sets contain independent
subsets of the non-bonded interactions. Their calculate interactions() method may be called in par-
allel (using either shared or distributed memory parallelisation). The Nonbonded Sets share (through the
Nonbonded Interaction) a pairlist construction algorithm, which they call to create the part of the com-
plete pairlist relevant to them. These different parts of the pairlist stay together with the Nonbonded Set

and need never be assembled into the complete pairlist. To gain flexibility, the calculation of the individ-
ual atom - atom pair interaction is further split up into a Nonbonded Outerloop (loops over the atom -
atom pairs), a Nonbonded Innerloop (prepares the parameters necessary to calculate the interaction) and
a Nonbonded Term (calculates the atom - atom pair interaction energy, force and virial contribution). The
Storage class provides directly accessible (local) memory for each Nonbonded Set.

Figure 1.2. Illustration of the Interaction classes in MD++. The red arrows de-
note a is-a relationship, the black arrows has-a. All Interaction classes inherit from
Interaction and, therefore, can be stored in the Forcefield, which is a vector of
Interaction classes. The Nonbonded Interaction consists of a Pairlist Algorithm (ei-
ther a Standard Pairlist Algorithm or a Grid Pairlist Algorithm) and (depending on
parallelisation) one or more Nonbonded Sets. Those, in turn, consist of Storage (to locally
store forces, energies, virial tensor and pair lists) and an Outerloop (to calculate the inter-
actions). The Outerloop relies on the Innerloop and on Term to calculate the interactions.

1.2.1. Efficiency. The main goal for writing a new C++ MD engine was to further improve on mod-
ularity (using some object-oriented features) and extendability (using clear and common interfaces between
the modules). Nevertheless, a simulation code has to be reasonably efficient to be of practical use. The
complete code is written in standard C++1 with no language extensions or machine-specific parts, resulting
in a highly portable program. This means that the compiler has to do all machine specific optimisations.
We believe that the absence of any machine specific parts of code, which require duplication to be able to
run on different machines, facilitates future modification. Furthermore, current compilers are getting ever
better at producing fast programs, making use of the specific features available on the machine. In the inner
loops of the interaction calculation, templates are used to generate specialised code. There are, for instance,
specialised periodicity classes for the different implemented types of periodic boundary conditions (vacuum,

6-5

PREVIEW
 VERSION

This is only a preview version of the GROMOS Manual and User Guide.
The full version can be purchased on http://www.gromos.net/

rectangular, truncated octahedral and triclinic). The Innerloop methods are called with the boundary type
as a template argument. Thus the compiler will generate a different specialised version of the inner loops
for different boundary conditions automatically. In the same manner, the interaction function term of the
non-bonded interaction can also be chosen (e.g. with or without switching function for non-bonded inter-
actions) without any if statement required in the compiled inner loop. Example code fragments are shown
in List. 1.3 and List. 1.4. The same technique is used to implement perturbation simulations and different
definitions of the virial tensor.

1 enum boundary_type {vacuum, rectangular , triclinic};

2 template <boundary_type boundary >

3 class Periodicity;

4

5 template <>

6 class Periodicity <vacuum >{

7 public:

8 void nearest_image(Vec const & ri, Vec const & rj, Vec & rij);

9 };

10

11 template <>

12 class Periodicity <rectangular >{

13 public:

14 void nearest_image(Vec const & ri, Vec const & rj, Vec & rij);

15 };

16

17 template <>

18 class Periodicity <triclinic >{

19 public:

20 void nearest_image(Vec const & ri, Vec const & rj, Vec & rij);

21 };

22

23 template <boundary_type boundary >

24 class Interaction{

25 public:

26 virtual int calculate_interactions(Topology const & topology ,

27 Configuration & configuration ,

28 Simulation const & simulation) {

29

30 Vec r;

31 Periodicity <boundary > periodicity(configuration.current ().box);

32

33 periodicity.nearest_image(

34 configuration.current ().pos(0),

35 configuration.current ().pos(1),

36 r);

37 const double r2 = math::abs2(r);

38 // and so on

39 return 0;

40 }

41 };

Listing 1.3. Specialzed code generation using templates.

1 int main(int argc , char **argv) {

2 Interaction <triclinic > interaction;

3 interaction.calculate_interactions(

4 topology , configuration , simulation);

5 return 0;

6 }

Listing 1.4. The usage of periodic boundary condition specific templates demonstrated on
the Interaction class.

Some algorithms do rely on information from the previous integration step. To help implementing those
kinds of algorithms, the complete current and old state (positions, velocities, forces, energies, restraint and
constraint data, averages, and so on) of the simulation are stored. During the leap-frog algorithm, the current
state becomes the old state and the updated information is stored in the new current state. This transfer is
done by a simple and fast pointer exchange. This slightly increases memory usage, but the required space is
still small compared to that used to store the pairlists.

6-6

PREVIEW
 VERSION

This is only a preview version of the GROMOS Manual and User Guide.
The full version can be purchased on http://www.gromos.net/

1.2.2. Debugging information. It is often difficult to figure out what is going on during an MD or SD
simulation or an EM and users tend to use the program as a black box. MD++ tries to improve this situation
by enabling the user to select a tuneable amount of information to be printed out during the simulation.
Every output or debugging message is associated with a debugging level, and the message is printed only if
the requested debugging level is high enough. Additionally, every code section belongs to a module and a
submodule. Different debug levels can be specified for all combinations of modules and submodules. In that
way, fine grained control is achieved on how much information from which part of the MD++ code should
be printed. For example, running MD++ like this

1 ~/> md @f md.args @verb interaction:special:4

will print all debug messages in the interaction/special part of the code with a level lower than four. Addi-
tional information on debugging can be found in the doxygen documentation.

1.2.3. In-code documentation. All classes, structures and enumerations are documented in-code

using the doxygen documentation tool. This documentation contains descriptions of the classes of MD++

and their usage. Inheritance diagrams, function call relationships and interactive links to other classes
are automatically generated by the tool. The documentation further contains a brief description of the
current input formats used in the given version of MD++. See Sec. 8-3.1 on how to generate the doxygen

documentation during the compilation procedure of MD++.

1.3. GROMOS++ outline

GROMOS++ is a software package providing the user with tools to prepare all the needed input files
for a standard simulation using MD++ or PROMD, e.g. the generation of the molecular topology, initial
coordinates of randomly distributed molecules (solvent) or initial coordinates derived from a pdb file (solute),
the solvation of a solute in the solvent and the split up of a simulation in multiple jobs with constant or
changing simulation parameters over the job sequence. Furthermore, there are multiple programs to analyse
the simulations performed. The following is a list of the most important GROMOS++ programs and
the corresponding tasks. A complete list is available via the documentation tool, see Sec. 8-3.1 for more
information:

- com top combines multiple topology files into one file.
- dssp monitors secondary structure elements of a protein, based on the rules defined by Kabsch and
Sander2.

- ene ana analyses (energy) trajectories.
- frameout writes out individual configurations or movies from a molecular trajectory file.
- hbond monitors the occurrence of hydrogen bonds.
- ion replaces water molecules by ions (to get an overall neutral box).
- make top creates molecular topologies from building block and force-field parameter files.
- mk script generates (multiple) script files to run simulations.
- noe analyses NOE distances over a trajectory.
- pdb2g96 converts coordinate files from pdb to the GROMOS file format.
- ran box creates a condensed phase system of any composition (randomly distributed molecules).
- sim box solvates a solute in a box of pre-equilibrated solvent.
- tser calculates time series of properties which may be specified flexibly by the user (distances, angles,
dihedral angles, intersection angles with planes, . . .).

As mentioned before, this list is not complete and a lot of more specific analyses can be done using multiple
programs in the right order.

Besides all the programs listed above there is a contrib collection of programs, a folder containing some
GROMOS++ programs which are not of general use but treat a very specific topic or programs which were
replaced by newer versions. A list and short explanation of these programs is available via the documentation
tool, see Sec. 8-3.1 for more information.

1.3.1. GROMOS++ source code and in-code documentation. The GROMOS++ source code
is divided into two major parts, one containing the programs and contrib programs, the other one collecting
the tools (classes, structures and enumerations) used within the programs. The second part is in turn split
up into eight different parts: gromos, gcore, gmath, gio, bound, fit, args and utils (represented as C++
namespaces):

6-7

PREVIEW
 VERSION

This is only a preview version of the GROMOS Manual and User Guide.
The full version can be purchased on http://www.gromos.net/

- gromos handles the gromos exceptions (error messages).
- gcore contains all the classes that store the information about the molecular system, e.g. angles,
bonds, atom properties, Lennard-Jones parameters, information and coordinates of the solvent and
many more.

- gmath contains the tools of the basic vector and matrix algebra, handles time correlation functions
and distributions for a series of values as well. There is also a class to handle a kind of pocket
calculations read from a string (useful to mathematically interpret a program input parameter
defining some specific properties or calculations).

- gio contains the tools to read in data or write them out. The read or written data may for example
be a topology, coordinates, building block or input parameter files or any kind of trajectory.

- bound contains the classes to handle periodic boundary conditions (rectangular, triclinic, truncated
octahedron and vacuum).

- fit is the namespace that contains code for translational superpositioning and rotational fitting of
configurations.

- args contains classes to handle the different command line arguments needed by the programs.
- utils is the biggest and most manifold namespace. It contains a class which may perform some basic
tests on a molecular topology, classes which provide the tools to observe hydrogen bonds or define
secondary structure elements within the backbone of a protein using the rules defined by Kabsch and
Sander2, and many other classes. One of the most used classes within this namespace is probably
the class AtomSpecifier: it defines and implements a general form to access atoms in a system. It is
used to look over a specific set of atoms, possibly spanning different molecules. An AtomSpecifier is
basically a string defining one or a group of atoms, used as an input parameter of a program. More
detailed information about the exact format is given in the documentation tool (see Sec. 8-3.1).

All the classes, structures and enumerations of the eight namespaces used in GROMOS++ are docu-
mented in-code and available via the doxygen documentation tool. This also contains a description of all
programs together with some example input parameters. Interactive links to other classes are automatically
generated and help to understand the specific parts and functions of the code.

6-8

PREVIEW
 VERSION

This is only a preview version of the GROMOS Manual and User Guide.
The full version can be purchased on http://www.gromos.net/

CHAPTER 2

Error Messages

Error checking is done in GROMOS with respect to three types of inconsistencies.

1. The array sizes defined in the header files may not be sufficiently large to cope with the size of

the molecular system (solute, solvent, restraints, etc.) as specified in the input files. This type of
inconsistency is signalled by an error message indicating the subroutine producing the error and
that the value of an (input) variable is larger than the array size parameter MAX.... to be found in
the header files. So, either the former should be reduced or the latter enlarged.

2. The files from which data are read by a program may contain data or data types that are incompat-

ible with the expectations of the program. This type of inconsistency is signalled by an error message
as described under Pt. 1.

3. The control switches governing the action of a program may be set such that incompatible options

or program actions are selected. This type of inconsistency is signalled by an error message that
specifies the incompatible conditions that have been selected.

The philosophy with respect to error checking in GROMOS is that the user should be allowed to do silly

things, since what is silly in one case, may be useful in another. This means that only inconsistencies of the
first type mentioned above are rigorously checked. GROMOS error messages state the inconsistency, so
what’s wrong, not what’s to be done to remove the inconsistency. It is up to the user to think of and select
the appropriate action to avoid the error message.

With respect to the inconsistencies of the types mentioned above, the error message indicates the line of
the file where the error occurs and the name of the program or subroutine. This allows the user to identify
and analyse the inconsistency in case the printed error message is not sufficiently informative.

6-9

PREVIEW
 VERSION

This is only a preview version of the GROMOS Manual and User Guide.
The full version can be purchased on http://www.gromos.net/

PREVIEW
 VERSION

This is only a preview version of the GROMOS Manual and User Guide.
The full version can be purchased on http://www.gromos.net/

CHAPTER 3

Machine Compatibility

The GROMOS programs, class libraries and subroutines have been written in standard C++1 and stan-

dard Fortran 953. This means that GROMOS should compile and run on any machine for which standard
C++ and Fortran 95 compilers are available.

PROMD contains Fortran versions for the numerical and mathematical functions it needs. These may
be but need not be replaced by machine specific versions, e.g. to increase the speed of computation, see
Chap. 8-3. Whether PROMD should be used in 32 bit or 64 bit precision is up to the user, and must be
decided upon compilation, see Chap. 8-3. For many types of calculations 32 bit (single) precision is sufficient,
especially when considering the intrinsic accuracy of the physical or chemical data used in the calculation
and the fact that in statistical mechanics one is interested in ensemble averages of various physical quantities,
not in the individual atomic trajectories. On the other hand, 64 bit (double) precision may be a more safe
choice when averaging over many atomic configurations.

MD++ and GROMOS++ require a set of libraries to carry out numerical calculations. These libraries
are written in the C programming language and can be compiled with the same compilers as MD++

and GROMOS++ themselves, See Chap. 8-2. To maximize operating system and compiler compatibility
configuration is carried out by a GNU Autotools generated configuration script which generates the Makefiles
and takes care of correct linking of the libraries. All calculations are carried out in 64 bit (double) precision
only. Single precision may be available (by some compilers through their options) but is not recommended.

6-11

PREVIEW
 VERSION

This is only a preview version of the GROMOS Manual and User Guide.
The full version can be purchased on http://www.gromos.net/

