Ethyl2-methyl-7-oxo-7,10-dihydroimidazo[1,2-h][1,7]naphthyridine-8-carboxylate | C14H13N3O3 | MD Topology | NMR | X-Ray

Visualize with JSmol

Molecule Information

Molecule Typeheteromolecule
Residue Name (RNME)NS0Q
FormulaC14H13N3O3
IUPAC InChI Key
ZUCSJKMOUZUTAM-UHFFFAOYSA-N
IUPAC InChI
InChI=1S/C14H14N3O3/c1-3-20-14(19)10-6-15-11-9(12(10)18)4-5-17-7-8(2)16-13(11)17/h4-6H,3,7H2,1-2H3,(H,15,18)
IUPAC Name
Common NameEthyl2-methyl-7-oxo-7,10-dihydroimidazo[1,2-h][1,7]naphthyridine-8-carboxylate
Canonical SMILES (Daylight)
CCOC(=O)c1c[nH]c2c(c1=O)ccn1c2=[N]=[C](=C1)C
Number of atoms33
Net Charge0
Forcefieldmultiple
Molecule ID254631
ChemSpider ID28504315
ChEMBL ID 2023818
Visibility Public
Molecule Tags

Format

Molecular Dynamics (MD) Files

Generating ...

X-Ray - Docking Files

Generating ...

NMR Parameters

1H NMR Spectrum

Generating ...

Fragment-Based Charges

No charge assignments available. Use the button above to use OFraMP fragment-based charge assignment.

Topology History

Processing Information

QM Processing Stage

Click table to toggle details.

Processing Stage Template Semi-Empirical QM (QM0) DFT QM (QM1) DFT Hessian QM (QM2)
Calculation None Energy Minization Energy Minization Hessian
Level of Theory None Semi-Empirical / SCF DFT (B3LYP/6-31G*) DFT (B3LYP/6-31G*)
Default Size Limit (Atoms) 2000 500 50 40
Content of MD Topology
Charges Derived From None MOPAC Merz-Singh-Kollman Merz-Singh-Kollman
Geometry  User Provided Optimized Optimized Optimized
Non-Bonded Interactions Bonds Rule Based:

Parameters are asigned from existing parameters with a set of rules based on atom types and geometry.

Hessian Based:

Force constant are calculated from the QM potential. New parameters are created when no suitable parameters exists.

Angles
Dihedrals

Data

Current Processing StateCompleted
Total Processing Time34 days, 22:59:59 (hh:mm:ss)

ATB Pipeline Setting

Access to this feature is currently restricted

The maximum QM level is computed using the ATB Pipeline atom limits but can be manually increased on a case by case basis.

Calculated Solvation Free Energy

Access to this feature is currently restricted

Submit New Solvation Free Energy Computation