C28H36N4O6S2 | MD Topology | NMR | X-Ray

Visualize with JSmol

Molecule Information

Molecule Typeheteromolecule
Residue Name (RNME)RMTN
FormulaC28H36N4O6S2
IUPAC InChI Key
UXSCYRNPTJPSSB-FGYAAKKASA-N
IUPAC InChI
InChI=1S/C28H38N4O6S2/c1-17-9-18(2)14-31(13-17)39(35,36)21-5-7-23-25(11-21)28(30-34)26-12-22(6-8-24(26)27(23)29-33)40(37,38)32-15-19(3)10-20(4)16-32/h5-8,11-12,17-20,29-30,33-34H,9-10,13-16H2,1-4H3/t17-,18+,19-,20+
IUPAC Name
Common Name
Canonical SMILES (Daylight)
ONc1c2cc(ccc2c(c2c1cc(cc2)S(=O)(=O)N1C[C@H](C)C[C@@H](C1)C)NO)S(=O)(=O)N1C[C@H](C)C[C@@H](C1)C
Number of atoms76
Net Charge0
Forcefieldmultiple
Molecule ID306679
Visibility Public
Molecule Tags

Force Field Parameters

Molecular Dynamics (MD) Files

Generating ...

X-Ray - Docking Files

Generating ...

NMR Parameters

1H NMR Spectrum

Generating ...

Topology History

Processing Information

QM Processing Stage

Click table to toggle details.

Processing Stage Template Semi-Empirical QM (QM0) DFT QM (QM1) DFT Hessian QM (QM2)
Calculation None Energy Minization Energy Minization Hessian
Level of Theory None Semi-Empirical / SCF DFT (B3LYP/6-31G*) DFT (B3LYP/6-31G*)
Default Size Limit (Atoms) 1000 500 50 40
Content of MD Topology
Charges Derived From None MOPAC Merz-Singh-Kollman Merz-Singh-Kollman
Geometry  User Provided Optimized Optimized Optimized
Non-Bonded Interactions Bonds Rule Based:

Parameters are asigned from existing parameters with a set of rules based on atom types and geometry.

Hessian Based:

Force constant are calculated from the QM potential. New parameters are created when no suitable parameters exists.

Angles
Dihedrals

Data

Current Processing StateCompleted
Total Processing Time7:06:07 (hh:mm:ss)

ATB Pipeline Setting

Access to this feature is currently restricted

The maximum QM level is computed using the ATB Pipeline atom limits but can be manually increased on a case by case basis.

Experimental Solvation Free Energies (0-0 of 0)

Calculated Solvation Free Energy

Access to this feature is currently restricted

Submit New Solvation Free Energy Computation