C15H16O5 | MD Topology | NMR | X-Ray

Visualize with JSmol

Molecule Information

Molecule Typeheteromolecule
Residue Name (RNME)4QTW
FormulaC15H16O5
IUPAC InChI Key
IFYQXAXVZGMFNW-MVIRXUPPSA-N
IUPAC InChI
InChI=1S/C15H16O5/c1-4-15-5-9(16)10-7(2)14(18)20-12(10)11(15)8(3)13(17)19-6-15/h4,9-12,16H,1-3,5-6H2/t9-,10+,11+,12-,15+/m0/s1
IUPAC Name
(3aR,4S,5aR,9aR,9bR)-5a-ethenyl-4-hydroxy-3,9-dimethylidene-3a,4,5,6,9a,9b-hexahydrofuro[5,4-f]isochromene-2,8-dione
Common Name
Canonical SMILES (Daylight)
C=C[C@]12COC(=O)C(=C)[C@@H]2[C@@H]2[C@@H]([C@H](C1)O)C(=C)C(=O)O2
Number of atoms36
Net Charge0
Forcefieldmultiple
Molecule ID351110
ChEMBL ID 290210
Visibility Public
Molecule Tags

Format

Molecular Dynamics (MD) Files

Generating ...

X-Ray - Docking Files

Generating ...

NMR Parameters

1H NMR Spectrum

Generating ...

Fragment-Based Charges

No charge assignments available. Use the button above to use OFraMP fragment-based charge assignment.

Topology History

Processing Information

QM Processing Stage

Click table to toggle details.

Processing Stage Template Semi-Empirical QM (QM0) DFT QM (QM1) DFT Hessian QM (QM2)
Calculation None Energy Minization Energy Minization Hessian
Level of Theory None Semi-Empirical / SCF DFT (B3LYP/6-31G*) DFT (B3LYP/6-31G*)
Default Size Limit (Atoms) 2000 500 50 40
Content of MD Topology
Charges Derived From None MOPAC Merz-Singh-Kollman Merz-Singh-Kollman
Geometry  User Provided Optimized Optimized Optimized
Non-Bonded Interactions Bonds Rule Based:

Parameters are asigned from existing parameters with a set of rules based on atom types and geometry.

Hessian Based:

Force constant are calculated from the QM potential. New parameters are created when no suitable parameters exists.

Angles
Dihedrals

Data

Current Processing StateCompleted
Total Processing Time1 day, 7:26:04 (hh:mm:ss)

ATB Pipeline Setting

Access to this feature is currently restricted

The maximum QM level is computed using the ATB Pipeline atom limits but can be manually increased on a case by case basis.

Calculated Solvation Free Energy

Access to this feature is currently restricted

Submit New Solvation Free Energy Computation