4-Fluoro-N'-[(1E)-1-(2-pyridinyl)ethylidene]benzohydrazide | C14H12FN3O | MD Topology | NMR | X-Ray

Visualize with JSmol

Molecule Information

Molecule Typeheteromolecule
Residue Name (RNME)ZYS0
FormulaC14H12FN3O
IUPAC InChI Key
UTLMVCGCODXMJL-LICLKQGHSA-N
IUPAC InChI
InChI=1S/C14H13FN3O/c1-10(13-4-2-3-9-16-13)17-18-14(19)11-5-7-12(15)8-6-11/h2,4-9H,3H2,1H3,(H,18,19)/b17-10+
IUPAC Name
Common Name4-Fluoro-N'-[(1E)-1-(2-pyridinyl)ethylidene]benzohydrazide
Canonical SMILES (Daylight)
Fc1ccc(cc1)C(=O)N/N=C(/[C]1=CC=CC=[N]=1)\C
Number of atoms31
Net Charge0
Forcefieldmultiple
Molecule ID195029
ChemSpider ID4656676
ChEMBL ID 3197070
Visibility Public
Molecule Tags

Format

Molecular Dynamics (MD) Files

Generating ...

X-Ray - Docking Files

Generating ...

NMR Parameters

1H NMR Spectrum

Generating ...

Fragment-Based Charges

No charge assignments available. Use the button above to use OFraMP fragment-based charge assignment.

Topology History

Processing Information

QM Processing Stage

Click table to toggle details.

Processing Stage Template Semi-Empirical QM (QM0) DFT QM (QM1) DFT Hessian QM (QM2)
Calculation None Energy Minization Energy Minization Hessian
Level of Theory None Semi-Empirical / SCF DFT (B3LYP/6-31G*) DFT (B3LYP/6-31G*)
Default Size Limit (Atoms) 2000 500 50 40
Content of MD Topology
Charges Derived From None MOPAC Merz-Singh-Kollman Merz-Singh-Kollman
Geometry  User Provided Optimized Optimized Optimized
Non-Bonded Interactions Bonds Rule Based:

Parameters are asigned from existing parameters with a set of rules based on atom types and geometry.

Hessian Based:

Force constant are calculated from the QM potential. New parameters are created when no suitable parameters exists.

Angles
Dihedrals

Data

Current Processing StateCompleted
Total Processing Time34 days, 22:59:59 (hh:mm:ss)

ATB Pipeline Setting

Access to this feature is currently restricted

The maximum QM level is computed using the ATB Pipeline atom limits but can be manually increased on a case by case basis.

Calculated Solvation Free Energy

Access to this feature is currently restricted

Submit New Solvation Free Energy Computation