(4aR,7R,8R)-7,8-Dihydroxy-4a,8-dimethyl-4,4a,5,6,7,8-hexahydro-2(3H)-naphthalenone | C12H18O3 | MD Topology | NMR | X-Ray

Visualize with JSmol

Molecule Information

Molecule Typeheteromolecule
Residue Name (RNME)KDDI
FormulaC12H18O3
IUPAC InChI Key
ORLGUEREMYIFNG-GRYCIOLGSA-N
IUPAC InChI
InChI=1S/C12H18O3/c1-11-5-3-8(13)7-9(11)12(2,15)10(14)4-6-11/h7,10,14-15H,3-6H2,1-2H3/t10-,11+,12-/m1/s1
IUPAC Name
(4aR,7R,8R)-7,8-dihydroxy-4a,8-dimethyl-4,5,6,7-tetrahydro-3H-naphthalen-2-one
Common Name(4aR,7R,8R)-7,8-Dihydroxy-4a,8-dimethyl-4,4a,5,6,7,8-hexahydro-2(3H)-naphthalenone
Canonical SMILES (Daylight)
O=C1CC[C@@]2(C(=C1)[C@@](C)(O)[C@@H](CC2)O)C
Number of atoms33
Net Charge0
Forcefieldmultiple
Molecule ID230840
ChemSpider ID8438013
ChEMBL ID 71537
Visibility Public
Molecule Tags

Format

Molecular Dynamics (MD) Files

Generating ...

X-Ray - Docking Files

Generating ...

NMR Parameters

1H NMR Spectrum

Generating ...

Fragment-Based Charges

No charge assignments available. Use the button above to use OFraMP fragment-based charge assignment.

Topology History

Processing Information

QM Processing Stage

Click table to toggle details.

Processing Stage Template Semi-Empirical QM (QM0) DFT QM (QM1) DFT Hessian QM (QM2)
Calculation None Energy Minization Energy Minization Hessian
Level of Theory None Semi-Empirical / SCF DFT (B3LYP/6-31G*) DFT (B3LYP/6-31G*)
Default Size Limit (Atoms) 2000 500 50 40
Content of MD Topology
Charges Derived From None MOPAC Merz-Singh-Kollman Merz-Singh-Kollman
Geometry  User Provided Optimized Optimized Optimized
Non-Bonded Interactions Bonds Rule Based:

Parameters are asigned from existing parameters with a set of rules based on atom types and geometry.

Hessian Based:

Force constant are calculated from the QM potential. New parameters are created when no suitable parameters exists.

Angles
Dihedrals

Data

Current Processing StateCompleted
Total Processing Time19:09:02 (hh:mm:ss)

ATB Pipeline Setting

Access to this feature is currently restricted

The maximum QM level is computed using the ATB Pipeline atom limits but can be manually increased on a case by case basis.

Calculated Solvation Free Energy

Access to this feature is currently restricted

Submit New Solvation Free Energy Computation