EAI045 | C19H14FN3O3S | MD Topology | NMR | X-Ray

Visualize with JSmol

Molecule Information

Molecule Typeheteromolecule
Residue Name (RNME)VM04
FormulaC19H14FN3O3S
IUPAC InChI Key
GIEUYYZVBNDIOT-MRXNPFEDSA-N
IUPAC InChI
InChI=1S/C19H15FN3O3S/c20-12-5-6-15(24)14(9-12)16(17(25)22-19-21-7-8-27-19)23-10-11-3-1-2-4-13(11)18(23)26/h1-7,9,16,24H,8,10H2,(H,22,25)/t16-/m1/s1
IUPAC Name
Common NameEAI045
Canonical SMILES (Daylight)
S1C(=[N]=CC1)NC(=O)[C@@H](c1c(O)ccc(c1)F)N1Cc2c(C1=O)cccc2
Number of atoms41
Net Charge0
Forcefieldmultiple
Molecule ID323344
ChemSpider ID57617946
Visibility Public
Molecule Tags

Format

Molecular Dynamics (MD) Files

Generating ...

X-Ray - Docking Files

Generating ...

NMR Parameters

1H NMR Spectrum

Generating ...

Fragment-Based Charges

No charge assignments available. Use the button above to use OFraMP fragment-based charge assignment.

Topology History

Processing Information

QM Processing Stage

Click table to toggle details.

Processing Stage Template Semi-Empirical QM (QM0) DFT QM (QM1) DFT Hessian QM (QM2)
Calculation None Energy Minization Energy Minization Hessian
Level of Theory None Semi-Empirical / SCF DFT (B3LYP/6-31G*) DFT (B3LYP/6-31G*)
Default Size Limit (Atoms) 2000 500 50 40
Content of MD Topology
Charges Derived From None MOPAC Merz-Singh-Kollman Merz-Singh-Kollman
Geometry  User Provided Optimized Optimized Optimized
Non-Bonded Interactions Bonds Rule Based:

Parameters are asigned from existing parameters with a set of rules based on atom types and geometry.

Hessian Based:

Force constant are calculated from the QM potential. New parameters are created when no suitable parameters exists.

Angles
Dihedrals

Data

Current Processing StateCompleted
Total Processing Time19:44:16 (hh:mm:ss)

ATB Pipeline Setting

Access to this feature is currently restricted

The maximum QM level is computed using the ATB Pipeline atom limits but can be manually increased on a case by case basis.

Calculated Solvation Free Energy

Access to this feature is currently restricted

Submit New Solvation Free Energy Computation