C12H26N2O9 | MD Topology | NMR | X-Ray

Visualize with JSmol

Molecule Information

Molecule Typeheteromolecule
Residue Name (RNME)E138
FormulaC12H26N2O9
IUPAC InChI Key
WWRMUNNFRHAWMJ-PMCTYKHCSA-N
IUPAC InChI
InChI=1S/C12H26N2O9/c13-5-9(19)10(4(2-16)21-11(5)20)23-12-6(14)8(18)7(17)3(1-15)22-12/h3-12,15-20H,1-2H2,13-14H3/t3-,4-,5-,6-,7-,8-,9-,10-,11-,12+/m1/s1
IUPAC Name
Common Name
Canonical SMILES (Daylight)
OC[C@H]1O[C@@H](O)[C@@H]([C@H]([C@@H]1O[C@@H]1O[C@H](CO)[C@H]([C@@H]([C@H]1[NH3])O)O)O)[NH3]
Number of atoms49
Net Charge2
Forcefieldmultiple
Molecule ID33734
Visibility Public
Molecule Tags

Format

Molecular Dynamics (MD) Files

Generating ...

X-Ray - Docking Files

Generating ...

NMR Parameters

1H NMR Spectrum

Generating ...

Fragment-Based Charges

No charge assignments available. Use the button above to use OFraMP fragment-based charge assignment.

Topology History

Processing Information

QM Processing Stage

Click table to toggle details.

Processing Stage Template Semi-Empirical QM (QM0) DFT QM (QM1) DFT Hessian QM (QM2)
Calculation None Energy Minization Energy Minization Hessian
Level of Theory None Semi-Empirical / SCF DFT (B3LYP/6-31G*) DFT (B3LYP/6-31G*)
Default Size Limit (Atoms) 2000 500 50 40
Content of MD Topology
Charges Derived From None MOPAC Merz-Singh-Kollman Merz-Singh-Kollman
Geometry  User Provided Optimized Optimized Optimized
Non-Bonded Interactions Bonds Rule Based:

Parameters are asigned from existing parameters with a set of rules based on atom types and geometry.

Hessian Based:

Force constant are calculated from the QM potential. New parameters are created when no suitable parameters exists.

Angles
Dihedrals

Data

Current Processing StateCompleted
Total Processing Time1 day, 2:13:31 (hh:mm:ss)

ATB Pipeline Setting

Access to this feature is currently restricted

The maximum QM level is computed using the ATB Pipeline atom limits but can be manually increased on a case by case basis.

Calculated Solvation Free Energy

Access to this feature is currently restricted

Submit New Solvation Free Energy Computation