C12H10ClN3O2S | MD Topology | NMR | X-Ray

Visualize with JSmol

Molecule Information

Molecule Typeheteromolecule
Residue Name (RNME)Y3Z8
FormulaC12H10ClN3O2S
IUPAC InChI Key
UCSVHKSLTUUMCN-UHFFFAOYSA-N
IUPAC InChI
InChI=1S/C12H11ClN3O2S/c13-9-4-2-1-3-8(9)11(18)15-7-10(17)16-12-14-5-6-19-12/h1-5H,6-7H2,(H,15,18)(H,16,17)
IUPAC Name
2-chloro-N-[2-oxo-2-(1,3-thiazol-2-ylamino)ethyl]benzamide
Common Name
Canonical SMILES (Daylight)
O=C(NC1=[N]=[CH]=CS1)CNC(=O)c1ccccc1Cl
Number of atoms29
Net Charge0
Forcefieldmultiple
Molecule ID155545
ChEMBL ID 3455896
Visibility Public
Molecule Tags

Format

Molecular Dynamics (MD) Files

Generating ...

X-Ray - Docking Files

Generating ...

NMR Parameters

1H NMR Spectrum

Generating ...

Fragment-Based Charges

No charge assignments available. Use the button above to use OFraMP fragment-based charge assignment.

Topology History

Processing Information

QM Processing Stage

Click table to toggle details.

Processing Stage Template Semi-Empirical QM (QM0) DFT QM (QM1) DFT Hessian QM (QM2)
Calculation None Energy Minization Energy Minization Hessian
Level of Theory None Semi-Empirical / SCF DFT (B3LYP/6-31G*) DFT (B3LYP/6-31G*)
Default Size Limit (Atoms) 2000 500 50 40
Content of MD Topology
Charges Derived From None MOPAC Merz-Singh-Kollman Merz-Singh-Kollman
Geometry  User Provided Optimized Optimized Optimized
Non-Bonded Interactions Bonds Rule Based:

Parameters are asigned from existing parameters with a set of rules based on atom types and geometry.

Hessian Based:

Force constant are calculated from the QM potential. New parameters are created when no suitable parameters exists.

Angles
Dihedrals

Data

Current Processing StateCompleted
Total Processing Time2 days, 10:46:29 (hh:mm:ss)

ATB Pipeline Setting

Access to this feature is currently restricted

The maximum QM level is computed using the ATB Pipeline atom limits but can be manually increased on a case by case basis.

Calculated Solvation Free Energy

Access to this feature is currently restricted

Submit New Solvation Free Energy Computation