5,5-Dibromo-2,4,6(1H,3H,5H)-pyrimidinetrione | C4H2Br2N2O3 | MD Topology | NMR | X-Ray

Visualize with JSmol

Molecule Information

Molecule Typeheteromolecule
Residue Name (RNME)F009
FormulaC4H2Br2N2O3
IUPAC InChI Key
AMATXUCYHHHHHB-UHFFFAOYSA-N
IUPAC InChI
InChI=1S/C4H2Br2N2O3/c5-4(6)1(9)7-3(11)8-2(4)10/h(H2,7,8,9,10,11)
IUPAC Name
5,5-dibromo-1,3-diazinane-2,4,6-trione
Common Name5,5-Dibromo-2,4,6(1H,3H,5H)-pyrimidinetrione
Canonical SMILES (Daylight)
O=C1NC(=O)NC(=O)C1(Br)Br
Number of atoms13
Net Charge0
Forcefieldmultiple
Molecule ID126
ChemSpider ID85604
Visibility Public
Molecule Tags

Format

Molecular Dynamics (MD) Files

Generating ...

X-Ray - Docking Files

Generating ...

NMR Parameters

1H NMR Spectrum

Generating ...

Fragment-Based Charges

No charge assignments available. Use the button above to use OFraMP fragment-based charge assignment.

Topology History

Processing Information

QM Processing Stage

Click table to toggle details.

Processing Stage Template Semi-Empirical QM (QM0) DFT QM (QM1) DFT Hessian QM (QM2)
Calculation None Energy Minization Energy Minization Hessian
Level of Theory None Semi-Empirical / SCF DFT (B3LYP/6-31G*) DFT (B3LYP/6-31G*)
Default Size Limit (Atoms) 2000 500 50 40
Content of MD Topology
Charges Derived From None MOPAC Merz-Singh-Kollman Merz-Singh-Kollman
Geometry  User Provided Optimized Optimized Optimized
Non-Bonded Interactions Bonds Rule Based:

Parameters are asigned from existing parameters with a set of rules based on atom types and geometry.

Hessian Based:

Force constant are calculated from the QM potential. New parameters are created when no suitable parameters exists.

Angles
Dihedrals

Data

Current Processing StateCompleted
Total Processing Time1:00:00 (hh:mm:ss)

ATB Pipeline Setting

Access to this feature is currently restricted

The maximum QM level is computed using the ATB Pipeline atom limits but can be manually increased on a case by case basis.

Calculated Solvation Free Energy

Access to this feature is currently restricted

Submit New Solvation Free Energy Computation