C18H15NO2 | MD Topology | NMR | X-Ray

Visualize with JSmol

Molecule Information

Molecule Typeheteromolecule
Residue Name (RNME)LITD
FormulaC18H15NO2
IUPAC InChI Key
JEDOKEGGMJNKGY-UHFFFAOYSA-N
IUPAC InChI
InChI=1S/C18H15NO2/c1-21-18-10-9-16(12-19-18)14-7-5-13(6-8-14)15-3-2-4-17(20)11-15/h2-12,20H,1H3
IUPAC Name
Common Name
Canonical SMILES (Daylight)
CO[C]1=CC=C(C=[N]=1)c1ccc(cc1)c1cccc(c1)O
Number of atoms36
Net Charge0
Forcefieldmultiple
Molecule ID371242
ChEMBL ID 1097417
Visibility Public
Molecule Tags

Format

Molecular Dynamics (MD) Files

Generating ...

X-Ray - Docking Files

Generating ...

NMR Parameters

1H NMR Spectrum

Generating ...

Fragment-Based Charges

No charge assignments available. Use the button above to use OFraMP fragment-based charge assignment.

Topology History

Processing Information

QM Processing Stage

Click table to toggle details.

Processing Stage Template Semi-Empirical QM (QM0) DFT QM (QM1) DFT Hessian QM (QM2)
Calculation None Energy Minization Energy Minization Hessian
Level of Theory None Semi-Empirical / SCF DFT (B3LYP/6-31G*) DFT (B3LYP/6-31G*)
Default Size Limit (Atoms) 1000 500 50 40
Content of MD Topology
Charges Derived From None MOPAC Merz-Singh-Kollman Merz-Singh-Kollman
Geometry  User Provided Optimized Optimized Optimized
Non-Bonded Interactions Bonds Rule Based:

Parameters are asigned from existing parameters with a set of rules based on atom types and geometry.

Hessian Based:

Force constant are calculated from the QM potential. New parameters are created when no suitable parameters exists.

Angles
Dihedrals

Data

Current Processing StateCompleted
Total Processing Time1 day, 6:46:05 (hh:mm:ss)

ATB Pipeline Setting

Access to this feature is currently restricted

The maximum QM level is computed using the ATB Pipeline atom limits but can be manually increased on a case by case basis.

Experimental Solvation Free Energies (0-0 of 0)

Calculated Solvation Free Energy

Access to this feature is currently restricted

Submit New Solvation Free Energy Computation